Analysis 1
 24 January 2024

$$
\text { Warm-up: Calculate } \int_{1}^{2} \frac{1}{x^{5}} \mathrm{~d} x .
$$

Integrals

Indefinite integral example: $\int \frac{1}{x^{5}} \mathrm{~d} x=\frac{-1}{4 x^{4}}+C$
Definite integral example: $\int_{1}^{2} \frac{1}{x^{5}} \mathrm{~d} x=\frac{15}{64}$
New vocab: bounds integrand
We have four main techniques to find an indefinite integral:

- just think about derivatives
- use algebra first
- substitution
- parts

Often people think of definite integrals as having an answer that is a number, but this isn't technically correct.
Warm-up: $\int_{1}^{2} \frac{1}{x^{5}} \mathrm{~d} x=\frac{-1}{4(2)^{4}}-\frac{-1}{4(1)^{4}}=\frac{15}{64}$

New task: Calculate $\int_{1}^{b} \frac{1}{x^{5}} \mathrm{~d} x$.

Task 1: $\iint_{u}^{2 x \cos (3 x) d x} d v$
works the first lime
Task 2: $\int_{u}^{4 e^{2 x} x^{2} d x} d v$
requires \int by parks twice
Task: $I=\int e^{3 x} \cos (x) \mathrm{d} x$.
use parts twice and then solve equation for I

Task: $\int e^{3 x} \cos (x) \mathrm{d} x .=\frac{3}{10} e^{3 x} \cos (x)+\frac{1}{10} e^{3 x} \sin (x)+C$

Task 2: $\int \ln (x) \mathrm{d} x=x \ln (x)-x+C$

Rakional functions

The "inverse tangent" function $\arctan (x)$ satisfies

$$
\tan (\arctan (x))=x \quad \text { and } \quad(\arctan (x))^{\prime}=\frac{1}{x^{2}+1}
$$

We can use this for some integrals:

$$
\int \frac{16}{x^{2}+1} \mathrm{~d} x=16 \arctan (x)+c \quad \int \frac{16 x}{x^{2}+1} \mathrm{~d} x=8 \ln \left(x^{2}+1\right)+c
$$

$$
\int \frac{1}{16 x^{2}+1} \mathrm{~d} x=\frac{1}{4} \arctan (4 x)+C
$$

Rakional functions

The integral of any "rational function" $\frac{\text { polynomial }}{\text { polynomial }}$ can be done using

- inverse tangent,
- natural logarithm,
- and a lot of algebra (for example, partial fractions).

$$
\begin{aligned}
& \int \frac{12 x^{2}+x+9}{3 x^{3}+3 x^{2}+2 x+2} d x=\int \frac{12 x^{2}+x+9}{(x+1)\left(3 x^{2}+2\right)} d x=\int\left(\frac{4}{x+1}+\frac{1}{3 x^{2}+2}\right) \mathrm{d} x \\
& =4\left(\int \frac{1}{x+1} \mathrm{~d} x\right)+\frac{1}{2}\left(\int \frac{1}{\frac{3}{2} x^{2}+1} \mathrm{~d} x\right)=4 \ln (x+1)+\frac{1}{\sqrt{6}} \arctan \left(\sqrt{\frac{3}{2}} x\right)+C \\
& u=\sqrt{\frac{3}{2}} x
\end{aligned}
$$

Improper integrals

An improper integral of the first kind is a definite integral where one or both of the integral "bounds" are infinite.
Official definitions:

- $\int_{a}^{\infty} f(x) \mathrm{d} x$ means $\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) \mathrm{d} x$.
- $\int_{-\infty}^{b} f(x) \mathrm{d} x$ means $\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) \mathrm{d} x$.
- $\int_{-\infty}^{\infty} f(x) \mathrm{d} x$ means $\lim _{a \rightarrow-\infty} \int_{a}^{c} f(x) \mathrm{d} x+\lim _{b \rightarrow \infty} \int_{c}^{b} f(x) \mathrm{d} x$.

Improper integrals

An improper integral of the first kind is a definite integral where one or both of the integral "bounds" are infinite.

- Example: Calculate $\int_{1}^{\infty} \frac{1}{x^{5}} \mathrm{~d} x$.

Officially, this is shorthand for $\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{5}} \mathrm{~d} x$.
Answer: $\frac{1}{4}$

Task 1: $\int_{\pi}^{\infty} \cos (x) \mathrm{d} x \quad \lim _{b \rightarrow \infty} \sin (b)$ does not exist

Task 2: $\int_{-\infty}^{0} x e^{x} \mathrm{~d} x$.
Indefinite using parts: $\int x e^{x} d x=x e^{x}-\int e^{x} d x=e^{x}(x-1)+C$
For improper, this is $\lim _{a \rightarrow-\infty} e^{0}(0-1)-e^{a}(a-1)=-1$ requires L'Hospilal's Rule

$$
A=\int_{a}^{b} h(x) \mathrm{d} x
$$

Volume as an integral

$$
\begin{aligned}
& V=\int_{a}^{b} A(x) \mathrm{d} x \\
& V=\int_{a}^{b} \pi(r(x))^{2} \mathrm{~d} x
\end{aligned}
$$

Find the volume of the solid formed by rotating the region with $2 \leq x \leq 7$ and $0 \leq y \leq \frac{1}{2} x$ around the x-axis.

$$
\begin{aligned}
\text { Volume } & =\int_{\text {Left } x}^{\text {right } x} \text { Area } d x \\
& =\int_{2}^{7} \pi(\text { radius })^{2} d x \\
& =\int_{2}^{7} \pi\left(\frac{x}{2}\right)^{2} d x \\
& =\frac{(7)^{3}}{12} \pi-\frac{(2)^{3}}{12} \pi=\frac{356}{12} \pi
\end{aligned}
$$

Just like with area, some volumes are easier to calculate using $\int \ldots \mathrm{d} y$.
Task: Rotate the region bound by $y=11-x^{2}$ and $y=5$ around the y-axis. Find the volume of this solid.

$$
\int_{5}^{11} \pi r^{2} d y=\ldots=18 \pi
$$

Volumes with holes/gaps in them can often be found using the "washer method" (named after the hardware piece-Polish podkładka-not the machine for cleaning clothes).
You will not need to use this on any quiz or exam in this course.

Celebration of Knowledge \#2

The final exam will be
Wed. 7 February at 12:00 noon
room 201 / C-1
Second attempt one week later.

What topics would be most helpful to review next week?

- Limits (including

L'Hospital's Rule)

- Derivative rules
- Tangent lines
- CP, min, max
- Inflection points
- Taylor polynomials
- Basic integrals
- \int by substitution
- \int by parts
- Area
- Volume

